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The linear compliance tensor for trigonal symmetry has four different

eigenvalues, two of which have multiplicity 1, the others multiplicity 2. They

and the corresponding eigenvectors have been calculated in terms of the seven

parameters of the corresponding Voigt matrix. Necessary and sufficient

conditions have been derived for these components to guarantee positive

eigenvalues and thus a positive strain energy. The hierarchy of restrictions on

the linear elastic tensors that follow from Neumann’s principle for arbitrary

point groups in three dimensions has been established for the standard choice of

the Cartesian coordinate system, as well as in coordinate-independent form.

1. Introduction

In a series of papers, Theocaris & Sokolis (1999, 2000a,b, 2001)

described the spectral decomposition of the elastic compliance

and stiffness fourth-rank tensors for crystals with different

point-group symmetries. Their approach is based on the work

of Rychlewski (1984a,b), who set the general stage for the

spectral decomposition of the elastic tensors and considered

elastically isotropic and transversely isotropic media as

examples. Theocaris & Sokolis (1999, 2000a) found that the

number of different eigenvalues plus the number of different

‘eigenangles’ is equal to the number of independent tensor

components for monoclinic, orthorhombic, tetragonal, hex-

agonal and cubic crystals as well as in the isotropic case. For

trigonal crystals, they found a result that did not fit into the

general picture sketched above (Theocaris & Sokolis, 2000b).

In Theocaris & Sokolis (2001), they rediscussed the results

obtained in Theocaris & Sokolis (1999, 2000a), but did not

mention the trigonal case, maybe because they felt that

something was wrong in Theocaris & Sokolis (2000b). We,

therefore, reconsider the trigonal case in the present paper.

The compliance and stiffness tensors being invariant under

inversion, �11, the restrictions on their form imposed by point-

group symmetry will depend only on the Laue class. Because

there are 11 Laue classes, the number of different restrictions

cannot be larger than 12 if the isotropic case is also included. It

is well known that the restrictions are the same for the two

hexagonal Laue classes and also for the two cubic Laue classes

(see e.g. Nye, 1985; Landolt-Börnstein, 1979; Authier &

Zarembovitch, 2003). It will be shown that considering also

non-crystallographic point groups does not lead to other

restrictions. Forte & Vianello (1996) distinguish only eight

symmetry classes of elastic tensors, not ten. It will be shown

that this is because the tensors of the two trigonal Laue classes

belong to the same symmetry class; similarly, the tensors of the

two tetragonal Laue classes.

2. Descriptions of linear elasticity

Hooke’s law of linear elasticity can be generalized as follows

to anisotropic media (see e.g. Nye, 1985; Landolt-Börnstein,

1979; Theocaris & Sokolis, 1999; Authier & Zarembovitch,

2003):

"ij ¼ Sijkl�kl; ð1Þ

where the indices run from 1 to 3 and summation over re-

peated indices is implied. The second-rank tensors �kl and "ij

describe stress and strain, respectively; they are symmetric:

�kl = �lk and "kl = "lk. The fourth-rank tensor Sijkl describes

compliance and has the following symmetries: Sijkl = Sjikl =

Sijlk = Sklij. Owing to these symmetries, (1) can be expressed in

matrix form as follows:

"11

"22

"33

2"23

2"13

2"12

2
6666664

3
7777775
¼

S1111 S1122 S1133 2S1123 2S1113 2S1112

S1122 S2222 S2233 2S2223 2S2213 2S2212

S1133 S2233 S3333 2S3323 2S3313 2S3312

2S1123 2S2223 2S3323 4S2323 4S2313 4S2312

2S1113 2S2213 2S3313 4S2313 4S1313 4S1312

2S1112 2S2212 2S3312 4S2312 4S1312 4S1212

2
6666664

3
7777775

�11

�22

�33

�23

�13

�12

2
6666664

3
7777775
;

ð2Þ

which in Voigt notation becomes



"1

"2

"3

"4

"5

"6

2
6666664

3
7777775
¼

s11 s12 s13 s14 s15 s16

s12 s22 s23 s24 s25 s26

s13 s23 s33 s34 s35 s36

s14 s24 s34 s44 s45 s46

s15 s25 s35 s45 s55 s56

s16 s26 s36 s46 s56 s66

2
6666664

3
7777775

�1

�2

�3

�4

�5

�6

2
6666664

3
7777775

ð3Þ

or shortly

"� ¼ s����; ð4Þ

where the Greek indices run from 1 to 6.

Theocaris & Sokolis (1999) consider instead of the matrix

s�� a matrix in which the components without indices 4, 5 or 6

are the same, those with one index 4, 5 or 6 are 21/2 times

smaller and those with both indices in the range 4 to 6 are

2 times smaller. It follows that

"1

"2

"3

2�1=2"4

2�1=2"5

2�1=2"6

2
666666664

3
777777775

¼

s11 s12 s13 2�1=2s14 2�1=2s15 2�1=2s16

s12 s22 s23 2�1=2s24 2�1=2s25 2�1=2s26

s13 s23 s33 2�1=2s34 2�1=2s35 2�1=2s36

2�1=2s14 2�1=2s24 2�1=2s34 2�1s44 2�1s45 2�1s46

2�1=2s15 2�1=2s25 2�1=2s35 2�1s45 2�1s55 2�1s56

2�1=2s16 2�1=2s26 2�1=2s36 2�1s46 2�1s56 2�1s66

2
666666664

3
777777775

�1

�2

�3

21=2�4

21=2�5

21=2�6

2
666666664

3
777777775
ð5Þ

or

"11

"22

"33

21=2"23

21=2"13

21=2"12

2
666666664

3
777777775

¼

S1111 S1122 S1133 21=2S1123 21=2S1113 21=2S1112

S1122 S2222 S2233 21=2S2223 21=2S2213 21=2S2212

S1133 S2233 S3333 21=2S3323 21=2S3313 21=2S3312

21=2S1123 21=2S2223 21=2S3323 2S2323 2S2313 2S2312

21=2S1113 21=2S2213 21=2S3313 2S2313 2S1313 2S1312

21=2S1112 21=2S2212 21=2S3312 2S2312 2S1312 2S1212

2
666666664

3
777777775

�11

�22

�33

21=2�23

21=2�13

21=2�12

2
666666664

3
777777775
:

ð6Þ

Conversely, the stresses can be expressed by the strains,

�ij ¼ Cijkl"kl; ð7Þ

where Cijkl describes stiffness and has the following symme-

tries: Cijkl = Cjikl = Cijlk = Cklij. Owing to these symmetries, (7)

can be expressed in matrix form as follows:

�11

�22

�33

�23

�13

�12

2
6666664

3
7777775
¼

C1111 C1122 C1133 C1123 C1113 C1112

C1122 C2222 C2233 C2223 C2213 C2212

C1133 C2233 C3333 C3323 C3313 C3312

C1123 C2223 C3323 C2323 C2313 C2312

C1113 C2213 C3313 C2313 C1313 C1312

C1112 C2212 C3312 C2312 C1312 C1212

2
6666664

3
7777775

"11

"22

"33

2"23

2"13

2"12

2
6666664

3
7777775
;

ð8Þ

which in Voigt notation becomes

�1

�2

�3

�4

�5

�6

2
6666664

3
7777775
¼

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

2
6666664

3
7777775

"1

"2

"3

"4

"5

"6

2
6666664

3
7777775

ð9Þ

or shortly

�� ¼ c��"�: ð10Þ

Extending the approach of Theocaris & Sokolis (1999) also to

stiffness, we consider instead of the matrix c�� a matrix in

which the components without indices 4, 5 or 6 are the same,

those with one index 4, 5 or 6 are 21/2 times larger and those

with both indices in the range 4 to 6 are 2 times larger. It

follows that

�1

�2

�3

21=2�4

21=2�5

21=2�6

2
666666664

3
777777775

¼

c11 c12 c13 21=2c14 21=2c15 21=2c16

c12 c22 c23 21=2c24 21=2c25 21=2c26

c13 c23 c33 21=2c34 21=2c35 21=2c36

21=2c14 21=2c24 21=2c34 2c44 2c45 2c46

21=2c15 21=2c25 21=2c35 2c45 2c55 2c56

21=2c16 21=2c26 21=2c36 2c46 2c56 2c66

2
666666664

3
777777775

"1

"2

"3

2�1=2"4

2�1=2"5

2�1=2"6

2
666666664

3
777777775

ð11Þ

or

�11

�22

�33

21=2�23

21=2�13

21=2�12

2
666666664

3
777777775

¼

C1111 C1122 C1133 21=2C1123 21=2C1113 21=2C1112

C1122 C2222 C2233 21=2C2223 21=2C2213 21=2C2212

C1133 C2233 C3333 21=2C3323 21=2C3313 21=2C3312

21=2C1123 21=2C2223 21=2C3323 2C2323 2C2313 2C2312

21=2C1113 21=2C2213 21=2C3313 2C2313 2C1313 2C1312

21=2C1112 21=2C2212 21=2C3312 2C2312 2C1312 2C1212

2
666666664

3
777777775

"11

"22

"33

21=2"23

21=2"13

21=2"12

2
666666664

3
777777775
:

ð12Þ

Equations (6) and (12) show that in this alternative

approach the numerical factors appearing when changing

from tensor to matrix notation are distributed equally on

stress and strain, and equally on compliance and stiffness.

Let me explain the reason for considering the matrices

appearing in (5) and (11) rather than those in (3) and (9). The

identity map in the space of symmetric tensors of second rank

is given by

Iijkl ¼
1
2ð�ik�jl þ �il�jkÞ: ð13Þ
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Indeed, Iijkl"kl �
1
2ð"kl þ "lkÞ = "kl. The non-zero elements of

Iijkl are I1111 = I2222 = I3333 = 1 and I2323 (= I3223 = I2332 = I3232) =

I1313 (= I3113 = . . . ) = I1212 (= I2112 = . . . ) = 1
2. Going over to

6 � 6 matrix notation, we therefore obtain the identity matrix

I�� = ��� if we associate powers of 2 with the elements Iijkl as in

equations (6), (12), but not if we do it as in equations (2), (8).

The identity matrix has all its six eigenvalues equal to 1, as

expected for the identity map in the six-dimensional space of

symmetric tensors of second rank. We conclude that the

eigenvalues of the matrices appearing in equations (5), (6),

(11), (12) have to be considered in the spectral decomposition

of the compliance and stiffness tensor, not the eigenvalues of

the matrices appearing in equations (2), (3), (8), (9).

3. Eigenvalues and eigenvectors of the matrices
describing the elastic properties for trigonal symmetry

The compliance of a crystal is usually characterized by

specifying the components s�� of the matrix appearing in (3),

not more than 21 of which can be independent because the

matrix is symmetric. For crystals with higher than triclinic

point-group symmetry, the number of independent compo-

nents is reduced by Neumann’s principle. For the trigonal

crystal classes it is 7 for 3 and �33; 6 for 32, 3m and �33m. These two

cases will be referred to as trigonal-7 and trigonal-6, respec-

tively. The form of the matrices appearing in (3) and (9)

depends only on the Laue class and has been given e.g. in

Table 9 of Nye (1985) for the 11 crystallographic Laue classes

and for isotropic media. It follows from that table that, for

trigonal symmetry, the matrix in (5) has the form

s11 s12 s13 2�1=2s14 2�1=2s15 0

s12 s11 s13 �2�1=2s14 �2�1=2s15 0

s13 s13 s33 0 0 0

2�1=2s14 �2�1=2s14 0 2�1s44 0 �s15

2�1=2s15 �2�1=2s15 0 0 2�1s44 s14

0 0 0 �s15 s14 s11 � s12

2
6666664

3
7777775
ð14Þ

if the x3 axis of the Cartesian coordinate system is chosen

along the principal symmetry axis. In the case of 32, 3m and
�33m, we have s15 = 0 if x1 is chosen along a secondary symmetry

axis. The corresponding stiffness matrix is simply obtained by

replacing s by c. This is in contrast to the matrices s�� and c��
considered by Nye (1985), where s66 = 2(s11 � s12) and c66 =
1
2(c11 � c12).

Notice that (14) does not agree with the matrix for which

Theocaris & Sokolis (2000b) calculate the eigenvalues in their

equation (7). As a consequence, our results for the eigenvalues

and eigenangles will not agree with their equations (8) and

(14), respectively.

Matrix (14) has the eigenvalues

�1;2 ¼
s11 þ s12 þ s33

2
�

s11 þ s12 � s33

2

� �2

þ2s2
13

� �1=2

ð15aÞ

and

�3;4 ¼
s11 � s12 þ

1
2s44

2
�

s11 � s12 �
1
2s44

2

� �2

þ s2
14 þ s2

15

" #1=2

;

ð15bÞ

where the plus sign holds for �1 and �3, the minus sign for �2

and �4. The multiplicity is 1 for �1 and �2, 2 for �3 and �4.

The corresponding eigenvectors are

r1 ¼ f�2�1=2
ð�1 þ �2Þ sin!þ �3 cos!g

� ½�2�1=2 sin!;�2�1=2 sin!; cos!; 0; 0; 0�T ð16aÞ

r2 ¼ f2
�1=2
ð�1 þ �2Þ cos!þ �3 sin!g

� ½2�1=2 cos!; 2�1=2 cos!; sin!; 0; 0; 0�T ð16bÞ

r3 ¼ 21=2f�1
2ð�1 � �2Þ sin � þ ð�4 cos �þ �5 sin �Þ cos �g

� ½�2�1=2 sin �; 2�1=2 sin �; 0; cos � cos �; cos � sin �; 0�T

ð16cÞ

r4 ¼ 21=2f12ð�1 � �2Þ cos � þ ð�4 cos �þ �5 sin �Þ sin �g

� ½2�1=2 cos �;�2�1=2 cos �; 0; sin � cos �; sin � sin �; 0�T

ð16dÞ

r5 ¼ 21=2fð��4 sin �þ �5 cos �Þ cos � � �6 sin �g

� ½0; 0; 0;� cos � sin �; cos � cos �;� sin ��T ð16eÞ

r6 ¼ 21=2fð��4 sin �þ �5 cos �Þ sin � þ �6 cos �g

� ½0; 0; 0;� sin � sin �; sin � cos �; cos ��T; ð16f Þ

where these six eigenvectors have been normalized such that

P6

i¼1

ri ¼ ½�1; �2; �3; 21=2�4; 21=2�5; 21=2�6�
T : ð17Þ

Notice that the vectors between brackets in (16a)–(16 f) have

unit length. The vectors r3 and r5 belong to the same eigen-

value, and similarly r4 and r6. Eigenvectors corresponding to

different eigenvalues are always orthogonal. Notice that the

vectors have been chosen such that also r3 ? r5 and r4 ? r6.

The angles appearing in expressions (16), called ‘eigen-

angles’ are given by

tan 2! ¼
81=2s13

s11 þ s12 � s33

; ð18aÞ

tan 2� ¼
2ðs2

14 þ s2
15Þ

1=2

s11 � s12 �
1
2s44

; ð18bÞ

tan � ¼
s15

s14

: ð18cÞ

Notice that (18a) does not uniquely determine sin ! and cos !;

there are four possible pairs (sin !, cos !) related as (s, c),

(�s,�c), (c,�s), (�c, s). Changing from the first to the second

choice leaves all ri unaffected; changing to the third or fourth

choice exchanges r1 and r2, which corresponds to exchanging

the eigenvectors to the eigenvalues �1 and �2. The situation is

similar with regard to �; a simultaneous change of the signs of

sin � and cos � leaves all ri unaffected; the other two possible

changes exchange r3 and r4, as well as r5 and r6, corre-

sponding to an exchange of the eigenvectors to the eigen-

values �3 and �4. Equation (18c) determines sin � and cos � up

to a simultaneous change of sign. Such a change essentially
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affects the vectors r3, r4, r5 and r6; it has to be verified which

of the two possibilities corresponds to eigenvectors; see the

examples (a) and (b) below.

In the case trigonal-6, we have s15 = 0, i.e. � = 0 or 180�; the

sum of the number of independent eigenvalues, i.e. 4, and the

number of independent eigenangles, i.e. 3 or 2, therefore

equals the number of independent components sij also in the

two trigonal cases. Table 9 of Nye (1985) shows that the

hexagonal form is also obtained by putting s14 = 0, whence �3 =

s11 � s12, �4 = 1
2s44 and tan 2� = 0, in agreement with Theocaris

& Sokolis (2000a).

Let us consider two numerical examples, dolomite of type

trigonal-7 and calcite of type trigonal-6.

(a) Dolomite, CaMg(CO3)2, has space group R�33. Landolt-

Börnstein (1984) gives its compliance constants in units of

(TPa)�1 as s11 = 7.04, s33 = 11.2, s44 = 31.9, s12 = �2.4, s13 =

�2.3, s14 = 4.6, s15 =�3.3. These values are based on the results

by Humbert & Plicque (1972), who chose x1 along a shortest

lattice vector perpendicular to the symmetry axis. Equation

(15) then gives for the eigenvalues in (TPa)�1: �1 = 12.5, �2 =

3.30, �3 = 19.2, �4 = 6.16. It has been checked numerically that

the solutions ! = 22.4�, � = 30.1�, � = 144.3� of (18) give rise to

eigenvectors but � = 144.3� 180 = �35.7� does not. The

eigenvectors are

r1 / ½�0:269;�0:269; 0:925; 0; 0; 0�T;

r2 / ½0:654; 0:654; 0:381; 0; 0; 0�T;

r3 / ½�0:354; 0:354; 0;�0:703; 0:505; 0�T;

r4 / ½0:612;�0:612; 0;�0:407; 0:292; 0�T;

r5 / ½0; 0; 0;�0:505;�0:703;�0:501�T;

r6 / ½0; 0; 0;�0:292;�0:407; 0:866�T :

(b) Calcite, CaCO3, has space group R�33c. Landolt-Börnstein

(1979) gives its compliance constants in units of (TPa)�1 as

s11 = 11.4, s33 = 17.4, s44 = 41.4, s12 = �4.0, s13 = �4.5, s14 = 9.5.

Equation (15) then gives for the eigenvalues in (TPa)�1: �1 =

20.5, �2 = 4.31, �3 = 27.9, �4 = 8.19. The eigenangles ! = 25.9�,

� = �37.2�, � = 0� determine the eigenvectors:

r1 / ½�0:309;�0:309; 0:899; 0; 0; 0�T;

r2 / ½0:636; 0:636; 0:437; 0; 0; 0�T

r3 / ½0:428;�0:428; 0; 0:796; 0; 0�T

r4 / ½0:563;�0:563; 0;�0:605; 0; 0�T

r5 / ½0; 0; 0; 0; 0:796; 0:605�T

r6 / ½0; 0; 0; 0;�0:605; 0:796�T;

� = 180� does not give rise to eigenvectors.

4. Stress and strain eigenvectors, inequalities for the
compliance components of trigonal crystals

Defining

r ¼
P6

i¼1

ri ¼ ½�1; �2; �3; 21=2�4; 21=2�5; 21=2�6�
T ð19Þ

and

""" ¼ ½"1; "2; "3; 2�1=2"4; 2�1=2"5; 2�1=2"6�
T; ð20Þ

we can write (5) as

""" ¼ S � r: ð21Þ

We write (16) as

ri ¼ Ei � r; i ¼ 1; . . . ; 6: ð22Þ

The ri being mutually orthogonal, for arbitrary r, the Ei, i = 1,

. . . , 6, are projection operators onto one-dimensional

subspaces of the six-dimensional space of symmetric second-

rank tensors. Being projection operators, the Ei are idem-

potent, i.e. E2
i ¼ Ei.

The ri are the eigenstates of the compliance tensor S, called

stress eigenstates. Choosing appropriate solutions !, � and � of

equations (18) and defining �5 = �3, �6 = �4, we obtain

""" ¼ S � r ¼ ��r� ¼ ð��E�Þr; ð23Þ

where summation from 1 to 6 over repeated Greek indices is

understood.

Defining strain eigenstates """i by

"""i ¼ �iri; i ¼ 1; . . . ; 6; ð24Þ

the generalized Hooke law (5) is decomposed into six laws of

proportionality between the eigenstates of stress and strain.

These eigenstates satisfy for i 6¼ j:

ri � rj ¼ 0; ri � """j ¼ 0; """i � """j ¼ 0: ð25Þ

Thermodynamic arguments require the strain matrix c�� to be

positive definite (see e.g. Nye, 1985). It follows that also the

inverse matrix is positive definite, i.e. the compliance matrix

s��. Its eigenvalues (15) must therefore all be positive, from

which it follows that

s11 > 0; s33 > 0; s44 > 0; s11 > js12j;

ðs11 þ s12Þs33 > 2s2
13; ðs11 � s12Þs44 > 2ðs2

14 þ s2
15Þ: ð26Þ

Notice that the last restriction in (26) is stronger than the last

two restrictions in equations (37) of Theocaris & Sokolis

(2000b); the last two of their restrictions (37b) as well as (37c)

follow from the other restrictions (37).

5. The form of the linear elastic tensor for arbitrary
point groups in three dimensions

The form of the linear elastic tensor is of interest not only for

the crystallographic point groups but also for the point groups

of quasicrystals or for isotropic or transversely isotropic

media. We therefore shall discuss it for all the point groups in

three dimensions that are listed in Table 10.1.4.2 of Hahn &

Klapper (2002). The linear elastic tensor, being a polar tensor

of even rank, is invariant under the inversion �11. It follows that

invariance under a rotation and invariance under the same

rotation combined with the inversion lead to the same

restriction on the form of the tensor. Our task is made easy by

the result obtained by Hermann (1934) that a rotation of order

n leads to the same restrictions as a rotation of infinite order

for all tensors of rank < n. Generalizing the usual choice of a

standard Cartesian coordinate system also to non-crystal-

Acta Cryst. (2006). A62, 168–173 Hans Grimmer � Spectral decomposition of linear elastic tensor 171

research papers



lographic groups by choosing the principal rotation axis along

x3 and a possible rotation axis perpendicular to the principal

one along x1, we find that there are no other restrictions on the

form of the compliance matrix s�� and the stiffness matrix c��
than those given in Table 9 of Nye (1985).

For hexagonal point groups, s�� has the form

s11 s12 s13 0 0 0

s12 s11 s13 0 0 0

s13 s13 s33 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s66

2
6666664

3
7777775
; where s66 ¼ 2ðs11 � s12Þ:

ð27Þ

The form of c�� is similar, except that c66 = 1
2(c11 � c12). These

forms are valid also for the 2N-gonal non-crystallographic

groups n, �nn, n/m, n22, nmm, �nn2m, n/mmm with n = 2N, N 	 4,

the (2N + 1)-gonal non-crystallographic groups n, �nn, n2, nm,

�nnm with n = 2N + 1, N 	 2, and the cylindric groups 1, 1,

12, 1m, 1m. The form (27) is also called transversely

isotropic.

The isotropic form of s�� is

s11 s12 s12 0 0 0

s12 s11 s12 0 0 0

s12 s12 s11 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s44

2
6666664

3
7777775
; where s44 ¼ 2ðs11 � s12Þ:

ð28Þ

The form of c�� is similar, except that c44 = 1
2(c11 � c12). These

forms are valid also for the icosahedral groups 235, m�33�55 and

the spherical groups 21, m1.

These results can be summarized as follows: The compli-

ance and stiffness tensors are transversely isotropic for all

point groups with a unique rotation axis of order n 	 5, and

isotropic for all point groups with several rotation axes of

order n 	 5.

Fig. 1 tells us which restrictions in Table 9 of Nye (1985), to

which monoclinic || x1 has been added, are stronger or less

strong than others.

6. Coordinate-independent types of symmetry
restrictions

Selecting one of the three coordinate systems indicated in

Fig. 1 for monoclinic point groups, we are left with ten possible

types of symmetry restrictions for the first-order elastic

tensors. However, there are only eight coordinate-indepen-

dent types of restrictions, as pointed out by Forte & Vianello

(1996). This is because the coordinate-independent restric-

tions are the same for the two tetragonal Laue classes as well

as for the two trigonal ones. If a secondary symmetry direction

in Laue class �33m is chosen along x1, we shall have s15 = 0; if it is

chosen along x2, we shall have s14 = 0. Also in Laue class �33, we

could obtain s15 = 0 (or s14 = 0) by choosing x1 in the plane

perpendicular to x3 in an appropriate direction, which depends

on the elastic properties of the crystal. Similarly, s16 = 0 if a

secondary symmetry direction in Laue class 4/mmm is chosen

along x1. Also in Laue class 4/m, we could obtain s16 = 0 by

choosing x1 in the plane perpendicular to x3 in an appropriate

direction. It follows that there are only eight coordinate-

independent types of restrictions. Fig. 2 tells us which of these

are stronger or less strong than others.

Notice the line between the cubic and trigonal cases, which

is missing in Fig. 1 because none of the threefold axes of cubic

symmetry is along x3 for the standard choice of the Cartesian

coordinate system.

7. Conclusions

The fact that the number of different eigenvalues and the

number of eigenangles add up to the number of independent

coefficients in the matrix s��, which Theocaris & Sokolis (1999,

2000a) found for the monoclinic, orthorhombic, tetragonal-7,

tetragonal-6, hexagonal, cubic and isotropic cases, holds also

for trigonal-7 and trigonal-6.

Necessary and sufficient restrictions for the components of

s�� to make this matrix positive definite have been derived for
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Figure 1
Restrictions on the first-order compliance and stiffness tensors for the
standard choice of the Cartesian coordinate system. The restrictions are
stronger for the point-group symmetries at the lower end of a line than
for those at the upper end. The numbers on the left indicate the numbers
of independent tensor (and matrix) components.

Figure 2
Coordinate-independent restrictions on the first-order compliance and
stiffness tensors. The restrictions are stronger for the point-group
symmetries at the lower end of a line than for those at the upper end.
The numbers of independent eigenvalues of the corresponding matrices
(5) and (11), respectively, are given in parentheses.



the two trigonal cases, and it has been shown that the

restrictions of Theocaris & Sokolis (2000b) are not sufficient.

The hierarchy of restrictions on the linear elastic tensors

that follow from Neumann’s principle for arbitrary point

groups in three dimensions has been established for the

standard choice of the Cartesian coordinate system, as well as

in coordinate-independent formulation.
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